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can be noted that \ &I \ (or ] &z\) has the same upper bound as parameters of a passive 10SSY nonreciprocal two-port,’ “ 1EJ313

that deriving from condition (l), but thk limit corresponds only
Trans. Microwave Theory Tech. (Short Papers), vol. MTT-21, pp.
135-136! Mar. 1973.

tothe value of 18221 (orltil) givenlv [4] E. Carh and T. Corzani, “Sulle propriet& a una frequenza dells
matrice di diffusion di una rete a clue porte passiva, ” AUU Z%YJ,,

]s221 = (1s1,/s2, 1)(1 –1s211’) ’/’.
vol. 36, pp. 319-328, Apr. 1967.

[5] — “Sulla non reciprocit~ di una rete a due porte passiva, ” Note
Recekioni e Notizie, Istituto Superiore delle Poste e Telecomuni-

Ifthree moduliare given, e.g., l&zl, l&l, andl&ll, thebounds cazioni, Rome, Italy, vol. 17, pp. 792-800, Sept.–Ott. 196S.

imposed bypasskity on the last, I &I 1, are the following:
[6] R. LaRosaand H. J. Carlin, “A general theory of wideband match-

ing with dissipative 4-poles, ” J. Math. Phvs., vol. 33, Jan. 1955.

lS2211S1211tS211-[(1- lS2212-l&12)(l –lszzlz –lszd’)l’j, <l~,,l
1–1s22!2

<
~s’2211sMls211+[(l —IJS’2212- IS1212 )(1 —ls2212—ls21p)]1/2

l–~s22p
. (7)

Thelower bound in condition (7) isgreater than zero oniywhen

1s2,1 >[(1–ls1215) (l–l&12)l’/’ (8)

as also clearly reeults from Fig. 1. Multiconductor Transmission Lines and the Green’s

C. Passivity Conditions for Any Valueoj the Arguments Matrix

When the values of themoduli are such that condition >1 is
satisfied the arguments of the tlparameters canassume everv value. L. GRUNER, MEMBER, IEEE

In Fig. 1 the a~owed region for 1-6’,, I and \ S,, I is now that bounded

by the axes and the curve CO. Abstract-It is shown that the study of arbitrarily terminated

In particular, when I S22 1, I S12 1, and I & I are given, in order multiconductor transmission lines which may in general be 10SSY

that the passivity conditions for any value of the arguments hold, and sub jetted to excitation applied at an arbitrary point along the

the last modulus, \ SII 1, must satisfy the condition limes, may be effectively performed with the aid of the appropriate

/s,,/<
–1s,211s,211 s,ll+[(l– /s22]2–1s,21’)(1 –Is,, p-is,, l’)]’lz

(9)
l–!szzp

IV. RECIPROCAL NETWORKS Green’s matrix. The procedure is illustrated

When the two-port network is reciprocal (S,, = S,,), the mini- method of impedance measurement as well

mum realizability condition (7) becomes strip lines.

I 812p
–l<l&,\<l-

1$s121’
(lo)

1–/s221 1+1s221”

The lower bound in condition (9) is positive only if

1s221>1–1s121’. (11)

Furthermore, the passivity conditions for any value of the argu-
ments (9) reduces to

(12)

The same relations hold for I 5’,, 1, exchanging \ S’,, ~ with ~i% 1.

As regards the limits imposed on the modulus of the transmission
coefficient s12, when I & I and I S22 I are given they are easily found

from condition (2).

In the case of the minimum passivity conditions, one obtains [6]

Ifh < [u + I S1l I)(l – I i3221)l’/’ (13)

when I fl~l ~ g I Szz 1, and

l&21 <[(1 – lslll )(1 +1s221)1’/2 (14)

when / S’U ~ > I &Z 1.

If the passivity conditions for any value of the arguments we to

be verified, it must be

] S121 < [(1 – I &ll)(l — I S221)T’2. (15)

The latter conditions are also directly deducible from Fig. 1,

exchanging transmission with reflection coefficients and observing
that, in the reciprocal case, the allowed values of \ S]? I = I S21 I
are lying on the bisecting line.

I. INTRODUCTION

using the Chipmsn

as coupled micro-

There is a considerable body of literature dealing with multi-
conductor transmission lines [1 ]–[4] which are encountered in

such diverse contexts as microstrip directional couplers, overmoded

waveguides, shielded pair instrumentation cables, etc., to mention

but a few applications.
While known procedures are useful in dealing with various special-

ized cases, it will be shown that the use of the Green’e matrix tech-
nique makes it possible to deal with a very wide range of situations,
including excitation by voltage and current sources applied at points
not necessarily coinciding with the end terminals.

In what follows we shall consider a multiconductor transmission
line comprising n distinct conductors (which maybe 10SSY) in addi-

tion to the ground path. We find that [2] in the sinusoidal steady

state

[:1=[-:‘:I[2+EI ‘1)
where V, 1, V’, 1’, Es, and 1,s are n-dimensional column vectors
while Z and Y are n X n square matrices. Furthermore, V, lj Z,
Y, Es, I,s, and x have the usual meaning of voltage, current, imped-

ance per unit length, admittance per unit length, applied voltage
per unit length, applied current per unit length and distance, respec-
tively, while a prime denotes differentiation with respect to z.

II. THE MULTICONDUCTOR LINE GREEN’S MATRIX

With reference to Cole [5], a system of 2n differential equations

u’ = Au +~(z) (2)
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u(x) =
/

‘G(z,$)t(t) dt (3)
a

A, W“, Wa, D-’, @, G(x,~) are2n X2nsquare matrices, u(x) and

j(z) are 2n-dimensional vectors. Furthermore, @ represents an
arbitrary fundamental matrix of the homogeneous counterpart of

(2), G(z,g) denotes the Green’s matrix while Disdefmedby D =
W@(a) ~W@(b) anditis assumed that Disnonsingular.

For reference, (4) can bereadily derived when itisnoted that the
solution of (2) hasageneral formu = y + @cwhere yis a particular
vector solution and c is a yet unspecified matrix independent from
x, which can be determined with the aid of th~ boundary conditions.

With due regard to the foregoing boundary conditions and the defini-
tionof D,itfollowsthatc = –l)-l[W”y(a) + W5y(b)]. Itis easily

shown that [5]

and (4a) follows at once; (4b) isderived with theaidof a few further
algebraic transformations.

Applying (4a) and (4b) to a multiconductor transmission line
(Fig. 1) of length L, we note [1],[2] thata fundamental matrix
[as can be readily verified by evaluating the state transition matrix
exp (A~)] satisfying (1) has the form

[

cosh rz –sinh r~ (r-lz)
l?(x) = 1 (5)

–sinh 1%[ (1’~) ‘lY] cosh rTx

where r = (ZY)119 and rT = (YZ)ll~. However, there arecomputa-
tionaladvantages inusing adifferent fundamental matrix (not the

transition matrix), viz.,

[

exp (–rx) exp (rx)
‘@(x) = 1

J

(6)
exp (—rT~)YO —exp (rTx)YO

where YO = Z-lr. Equation (6) follows from (5) when it is noted
that @(x) in (4) indeterminate only within a nonsingular constant
matrix.

Although a wide range of boundary conditions can be handled, for
the purpose of illustrating the procedure we shall assume that the

multiconductor lines are terminated inimpedancee Zaat z = O and

Z5at~=L[x~ O, x = L corresponding to x = a and x = b,
respectively, in (3)] where Za and Zaaren X n diagonal matrices.
Since the boundary conditions are V(O) +ZJ(0) = V(L) –
zb~(~) =0, itfollows that

Wa=ru z. ~b=ro 01

Lo o1 IN ‘.%]
(7)

and with reference to (6)

D

[

u + Z.YO u – zaYo
—— 1

exp ( – rL) – % exp ( – r~L) YO exp (rL) + Zb exp (J7~L) YOJ

(8)

where U represents a unity matrix. Furthermore, with reference to
(1) and (3)

after suitably partitioning the Green’s matrix G (x,.$); evidently,

(9) holds for both point sources and distributed sources.
In particular, in the absence of an applied current source Is, and
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Fig. 2. ExamDle of a multiconductor transmission line
lumped coupling at the boundaries.
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(n = 2) with

corresponding to excitation due to an induced voltage source Es
only, we find that for values of x past the point at which the source

is located, i.e., g ~ x

G,, = -MRP G,, = MRQ G,, = –MkP G,, = MJS’Q

(lo)

where

M = –1/{det [Y, (exp [(rT – r)f] + exp r(r – rT)$l)l

.det [exp (1’L) (U + ZtYO) + exp (rTL) (Zbyo + Z.ZbY,2)

+ exp (–rL) (ZaY, – U) + exp (–PL) (Z~Y,

– Z.Z*YO’) ] ) (11)

P = [(u + ZOYO) exp (rTt) + (U – ZJ’0) exp (–r”t) 1% (W

Q = (U – .Z.YO) w (–n) – (u + ZJ’0) ew (u) (13)

R = exp ( –rz)[exp (rL) + Zb exp (FL) Y,]

Y exp (17x)[Zb exp (–r’L) Y, – exp (–I’L) ] (14)

~ = exp (–rTx) Y, [exp (?JL) + Z~ exp (rTL) Yo]

— exp (r%) Y.[Z6 exp ( –rTL) Y, – exp ( –rL) ]. (15)

The numerical computation of matrix functions such as r,
exp ( rx), etc., may be effectively performed with the aid of syl-
vester’s theorem [1], [6] which holds when all eigenvalues are
distinct and also when some or all are equal [6]. If the system con-
sis ts of 10SS1SSSconductors in a homogeneous dielectric, all eigenvalues
are equal and hence r = I’2’; for systems comprising, for example,
inhomogeneous dielectrics or lossy conductors, the eigenvalues are
in general distinct.

As mentioned earlier, the Green’s matrix technique is also ap-

plicable to other boundary conditions than those given by (7) such
as those due to lumped element coupling between the lines at one or

both boundaries (Fig. 2).
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We note also that the foregoing procedure, with particular refer-

ence to (4), (7), and (9) applies to nonuniform multiconductor
lines as well; while the numerical determination of a suitable funda-

mental matrix is not straightforward [7], the technique is systematic.

III. APPLICATIONS

With the view of illustrating the procedure with the aid of examples
which may be readily verified, we consider first coupled microstrip
lines for which scattering parameters have been presented by Napoli

[8] and Levy [91 using different procedures. The problem can be
reduced to finding voltages and currents at z = O and x = L of a
single transmission line of length L, having either an odd mode
characteristic impedance ZO. or an even mode impedance Zo., a

voltage source at one end and terminated in impedances Z. at both

ends. It can be very easily solved applying (10)–(15 ) when it is
noted that each matrix reduces to a single number. Thus we find

with the aid of (4a) and (9), letting IS = O and assuming for general-

ity that the terminations are Z. and Zb, respectively, rather than
identical (while the characteristic impedance is ZO), that

v(x) =
lJs(0)Z, {exp (–-w) + PB exp [7(z – z.L)I) ~16)

(Za + 20)[1 – P.PB exp (–%L) 1

I(x) =
Es(o) {exp (–’Y~) – .OBeXP [T($ – 2~)])

(Z. + 2.) [1 – P.PB exp ( –2YL) ]
(17)

where y represents one of the two eigenvalues of the problem ob-
tained by [10] solving det [-#U – ZY] = O and p~ = (Z. – Zo) /

(Z. + 2,), while PB = (Zb – ZO) /(Z~ + 2,).
As a second example arising in connection with the Chipman’s

method [11 ], [12] of impedance measurement we consider a single

transmission line of length L terminated in Z. at x = O and Zb at

x = ,L; voltage is induced from a loop assumed to be located at a

point g and it is desired to find the current at a point x > i.
Applying (10)- (15) and noting that each matrix reduces to a

single number we find easily that

I (X) =
E,, (:)

220[1 -
x {exp[r(:–z)]-p~

PAPB exp (-2rL) ]

.exp[— I’(z+~)]-pB exp[r’(z+g-2L)]+ PAPB

.exp[r(z — $ — 2L)]) (18)

where PA and PB have the same significance as before; this result has
been derived by Jackson [11] with some changes of notation.

Finally, it may be observed that when W“ and Wb are suitably
chosen, letting Es = O and IS = O in turn, yields the open-circuit

and short-circuit matrices of the system, respectively.
Thus letting ES = O and noting that in this case

/

L

v(x) = G’,, (z,E)I (E) dg (19)
o

if I(:) represents a source of unit magnitude (and is interpreted as

n unit vectors times 6&) located at .$ = O and f = L, respectively,

then V(z) is numerically equal to G,! (x,g) and all open-circuit
parameters are arrived at by a suitable choice of z and E. For exam-

ple, for a single transmission line it is easily verified that

zl/2y-1/2 co5h rx co5h r (L – ~)

G12(x,$) = , g > z (20)
sinh I’L

and hence Zll = Gl~ (0,0), ZIZ = GIZ (O,L), while .sr,I and .ZZZfollow

from G,, (z,:) g < x (or in this case by symmetry).
The short circuit parameters can be analogously derived with tbe

aid of Gjl (z, $) when W~ and Wb are suitably chosen. However, it

should be noted that both the open-circuit and short-circuit matrices
may be also derived more directly with the aid of the transition

matrix (5) without reference to (4).

IV. CONCLUSIONS

The Green’s matrix procedure, when applied to multiconductor
transmission lines, facilitates their analysis in a highly systematic

and efficient manner. Thus we note, for example, that conceptually
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the derivation of the analog of (18) corresponding to more than a

single transmission line presents no fresh dWiculties, while the use
of alternative techniques could prove cumbersome.
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Design and Analysis of a Waveguide-Sandwich

Microwave Filter

YUSUKE TAJIMA AND YOSHIHIKO SAWAYAMA

Abstract—In 1972 Konishi proposed a unique waveguide filter

of sandwich-like construction that was attractive because of its

simplicity. This short paper presents an analysis of the sandwich filter

that has a conductive sheet with finite thickness sandwiched between

waveguide shells. An equivalent circuit is derived, design charts

are proposed, and Young$e technique is applied to the design of an

M-band waveguide filter. The experimental results were found to

be in good agreement with the theory and analysis techniques de-

veloped herein.

I. INTRODUCTION

Microwave bandpass filter design techniques have been developed
by many authors. For instance, Cohn [1] and Riblet [2] have
treated coupled-resonator-microwave filters with narrow and mod-
erate bandwidths, while Young [3] has developed a more general
technique that holds for both small and wide bandpass microwave
filters. However, the structures of coupled resonator filters are

usually fairly complicated because many parts are required and the

dimensions of each are critical to the filter’s performance.
In 1972 Konishi proposed [4] the “microwave filter with mounted

planar circuit in a waveguide,” and similar structures have also
been euggested bv Meier [5]. These circuits are essentially corn-
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