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can be noted that | Si;| (or | S2|) has the same upper bound as
that deriving from condition (1), but this limit corresponds only
to the value of | Sx2 | (or | Su|) given by

[ 8ez| = (] S1a/Sur [) (1 — | S [%)12
If three moduli are given, e.g., | Sz |, | S12{, and | Sz |, the bounds
"imposed by passivity on the last, | Su |, are the following:
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The lower bound in condition (7) is greater than zero only when
| Saa| > L ~ | Sz |2) (@ — | Su |2) 2 (8)

as also clearly results from Fig. 1.

C. Passwity Conditions for Any Value of the Arguments

When the values of the moduli are such that condition £ > 1 is
satisfied the arguments of the § parameters can assume every value.
In Fig. 1 the allowed region for | Si | and | Sz | is now that bounded
by the axes and the curve C,.

In particular, when | Ss|, | Si2 ], and | 8u | are given, in order
that the passivity conditions for any value of the arguments hold,
the last modulus, | 8y |, must satisfy the condition

—[ S {8 8u] + LA —18e)—]8uih( _‘,gnlz_‘smp)]m'
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Multiconductor Transmission Lines and the Green’s
Matrix
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Abstract==It is shown that the study of arbitrarily terminated
multiconductor transmission lines which may in general be lossy
and subjected to excitation applied at an arbitrary point along the
lines, may be effectively performed with the aid of the appropriate
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IV. RECIPROCAL NETWORKS

When the two-port network is reciprocal (82 = Sy), the mini-
mum realizability condition (7) becomes

| S |2 | 81 2
— =1 < |8 <l - —. 10
T 18wl <Pl <1 = 1o
The lower bound in condition (9) is positive only if
[ 8| >1 —|8n2 (11)

Furthermore, the passivity conditions for any value of the argu-
ments (9) reduces to

| Sz |2

< 1 - .
0<[8u]< 1= 8nl

(12)
The same relations hold for | Sz |, exchanging | Su | with | Sa |.
As regards the limits imposed on the modulus of the transmission

coefficient S5, when | Si; | and | Sz | are given they are easily found

from condition (2).

In the case of the minimum passivity conditions, one obtains [6]

[8u| <[A+[Sul)@ —|8z|)]" (13)
when | 81| < | 82|, and
[Be| <L —=[8a)@ 4| 8ni)]” (14)

when | Su | > | See|.

If the passivity conditions for any value of the arguments are to
be verified, it must be

18| <[ —18uD)d —|8x|) I~

The latter conditions are also directly deducible from Fig. 1,
exchanging transmission with reflection coefficients and observing
that, in the reciprocal case, the allowed values of | S;2! = | Su |
are lying on the bisecting line.

(15)
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Green’s matrix. The procedure is illustrated using the Chipman
method of impedance measurement as well as coupled micro-
strip lines.

I. INTRODUCTION

There is a considerable body of literature dealing with multi-
conductor transmission lines [17]-[4] which are encountered in
such diverse contexts as microstrip directional couplers, overmoded
waveguides, shielded pair instrumentation cables, ete., to mention
but a few applications.

While known procedures are useful in dealing with various special-
ized cases, it will be shown that the use of the Green’s matrix tech-
nique makes it possible to deal with a very wide range of situations,
including excitation by voltage and current sources applied at points
not necessarily coinciding with the end terminals.

In what follows we shall consider a multiconductor transmission
line comprising n distinct conductors (which may be lossy) in addi-
tion to the ground path. We find that [27] in the sinusoidal steady

HE MR

where V, I, V', I, Es, and Is are n-dimensional column vectors
while Z and Y are n X n square matrices. Furthermore, V, I, Z,
Y, Es, Is, and z have the usual meaning of voltage, current, imped-
ance per unit length, admittance per unit length, applied voltage
per unit length, applied current per unit length and distance, respec-
tively, while a prime denotes differentiation with respect to z.

oy

II. THE MULTICONDUCTOR LINE GREEN’S MATRIX
With reference to Cole [5], a system of 2n differential equations
w = Au + f(x) (2)

subject to two point boundary conditions Weu(a) + Whu(b) =0
has a solution of the form
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u(z) = / "0 @,0f (@) de 3)
where
G@f) = o@D Wed(@)d()), E<s  (4a)
G@8) = —o@DWSB)ENE), &>z (4b)

A, We, Wb, D™, &, G(x,£) are 2n X 2n square matrices, u (z) and
f(z) are 2n-dimensional vectors. Furthermore, ® represents an
arbitrary fundamental matrix of the homogeneous counterpart of
(2), G(x,£) denotes the Green’s matrix while D is defined by D =
Wad(a) - W (b) and it is assumed that D is nonsingular.

For reference, (4) can be readily derived when it is noted that the
solution of (2) hasa general formu = y + ®c where y is a particular
vector solution and ¢ is a yet unspecified matrix independent from
#, which can be determined with the aid of the boundary conditions.
With due regard to the foregoing boundary conditions and the defini-
tion of D, it follows that ¢ = —D [ Wey(a) + Wy (b)]. It is easily
shown that [5]

y(@) = f "B @)e (5)f(8) di

and (4a) follows at once; (4b) is derived with the aid of a few further

algebraic transformations.

Applying (4a) and (4b) to a multiconductor transmission line
(Fig. 1) of length L, we note [11],[2] that a fundamental matrix
[as can be readily verified by evaluating the state transition matrix
exp (Az) ] satisfying (1) has the form

cosh I'z

I: —sinh I‘x(I‘”lZ):I
&(x) = (5)
—sginh T (IT)71Y ]

cosh I'Tx

where T' = (ZY)Y2and I'T = (YZ)12. However, there are computa-
tional advantages in using a different fundamental matrix (not the
transition matrix), viz.,

[ exp (—Iz) exp (I'z) -i
®(x) =

6
exp (—=TITz)Y, —exp (I'Tx) Yo_l

where Yo = Z7II'. Equation (6) follows from (5) when it is noted
that ®(z) in (4) is determinate only within a nonsingular constant
matrix.

Although a wide range of boundary conditions can be handled, for
the purpose of illustrating the procedure we shall assume that the
multiconductor lines are terminated in impedances Z, at = 0 and
Zy at * = L[z =0, £ = L corresponding to z = a and z = b,
respectively, in (3) ] where Z. and Zs are n X n diagonal matrices.
Since the boundary conditions are V(0) -+ Z,I(0) = V(L) —
ZyI (L) = 0, it follows that

0 0
r —l 7

" ﬁ Zo] “Lo -zl

and with reference to (6)

D

. [ U+ ZYe U — Z.Y, 7

* Lexp (=TL) — Zyexp (—=ITL)¥, exp (TL) + Z exp (T7L)Y, |
(8)

where U represents a unity matrix. Furthermore, with reference to
(1) and (3)

V@] [ [ouwd) Ouwd][E:0]
L@y ] %o Lowms enen L rs@l™

after suitably partitioning the Green’s matrix G(z,£); evidently,
(9) holds for both point sources and distributed sources.
In particular, in the absence of an applied current source I s, and

(9)
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Z, = diag{Za, Za2, Zan)

wi:|V % we=|0 0
[ U-Zp Z, = diagl{Zon, Zoa Zpn)
Fig. 1. Multiconductor transmission line terminated at both ends.
[ZLJ Z‘TZ-Z‘:Z ! 0 0 0
k] 1 1
W T Z5Eh 0 1 W i 0 0
0 0 0 0 S I 1 0
0 0 0 0 | Zbl Zmz Zm 0 )
L Z 2 Zbz 2o J
Fig. 2. Example of a multiconductor transmission line (n = 2) with

lumped coupling at the boundaries.

corresponding to excitation due to an induced voltage source Eg
only, we find that for values of z past the point at which the source
is located, i.e., : <z

Gu= -MRP Gu=MRQ Gu=~MSP Gun=MSQ
(10
where
M = —1/{det [V, (exp [(T* — I')¢] + exp [(T ~ I7)£])]
+det [exp (TL) (U + Z.Yo) + exp (PTL) (ZyYo + Z,,Z;,Y&)

+ exp (—TL) (Z.Y, — U) + exp (—TTL) (Z:Y,

— ZZyY %) 1} 11)
= [(U + ZaYo) exp (T75) + (U ~ Z.Yo) exp (—T7§) Vo (12)
Q= (U — Z.Y,) exp (—T%) — (U + Z.Yo) exp (T'§) (13)
B = exp (—Tx)[exp (VL) + Zyexp (TTL)Y,]
+exp (T2)[Zyexp (—TTL)Y, —exp (—TL)] (14)
S = exp (—TTz)Y,[exp (TL) + Zpexp (PTL)Y,]
— exp (PTz)Yo[Zsexp (—TTL)Y, — exp (—TL)]. (15)

The numerical computation of matrix functions such as T,
exp (Iz), etc., may be effectively performed with the aid of Syl-
vester’s theorem [17], [6] which holds when all eigenvalues are
distinet and also when some or all are equal [67]. If the system con-
sists of lossless conductors in 8 homogeneous dielectric, all eigenvalues
are equal and hence T' = I'T; for systems comprising, for example,
inhomogeneous dielectries or lossy conductors, the eigenvalues are
in general distinct.

As mentioned earlier, the Green’s matrix technique is also ap-
plicable to other boundary conditions than those given by (7) such
as those due to lumped element coupling between the lines at one or
both boundaries (Fig. 2).
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We note also that the foregoing procedure, with particular refer-
ence to (4), (7), and (9) applies to nonuniform multiconductor
lines as well; while the numerical determination of a suitable funda-
mental matrix is not straightforward [7], the technique is systematic.

IIT. APPLICATIONS

With the view of illustrating the procedure with the aid of examples
which may be readily verified, we consider first coupled microstrip
lines for which scattering parameters have been presented by Napoli
[8] and Levy [9] using different procedures. The problem can be
reduced to finding voltages and currents at ¢ = O and z = L of a
single transmission line of length L, having either an odd mode
characteristic impedance Zg, or an even mode impedance Zi, a
voltage source at one end and terminated in impedances Z, at both
ends. It can be very easily solved applying (10)-(15) when it is
noted that each matrix reduces to a single number. Thus we find
with the aid of (4a) and (9), letting I s = 0 and assuming for general-
ity that the terminations are Z, and Z,, respectively, rather than
identical (while the characteristic impedance is Z,), that

_ B5(0)Zs (exp (=) + ppexp [v(z — 20) 7}
V) = = 2 T Z0)[L — pars w0 (—241) ] (16)
1) = E(0) {exp (—vx) — ppexp [y(z —2L) 7} amn

(Zs + Zo)[1 — paps exp (—2vL)]

where ~ represents one of the two eigenvalues of the problem ob-
tained by [10] solving det [+v2U — ZY ] = 0 and ps = (Za — Zo)/
(Zo + Zyv), while pp = (Zp — Zo) /(Zs + Zo).

As a second example arising in connection with the Chipman’s
method [117,[12] of impedance measurement we consider a single
transmission line of length L terminated in Z, at 2 = 0 and Z; at
z = L; voltage is induced from a loop assumed to be located ata
point ¢ and it is desired to find the current at a point z > £

Applying (10)-(15) and noting that each matrix reduces to a
single number we find easily that

Es(g)
2Z[1 — pappexp (—2TL)]

cexp[~T(z +£)]— ppexp [P (@ + & — 2L) ] + paps
cexp [T'(z — & —2L) ]} (18)

where p4 and pp have the same significance as before; this result has
been derived by Jackson [117] with some changes of notation.
Finally, it may be observed that when W= and W? are suitably
chosen, letting Eg = 0 and Is = 0 in turn, yields the open-circuit
and short-circuit matrices of the system, respectively.
Thus letting Eg = 0 and noting that in this case

I(z) = X {exp [T(¢ —2)] — pa

L
V(=) =/ Gz (2,) 1 (§) dt (19)
0

if I (¢) represents a source of unit magnitude (and is interpreted as
7 unit vectors times 8¢) located at £ = 0 and ¢ = L, respectively,
then V(z) is numerically equal to Gi.(z,£) and all open-circuit

parameters are arrived at by a suitable choice of 2 and £ For exam-
ple, for a single transmission line it is easily verified that

Z12Y 112 gosh T'w cosh T' (L — £)
sinh TL

and hence 25 = Glz (0,0), 212 = Glz (O,L), while 221 and 222 follow
from Gy, (z,£)¢ < « (or in this case by symmetry).

The short circuit parameters can be analogously derived with the
aid of Gu(z,&) when We and W are suitably chosen. However, it
should be noted that both the open-circuit and short-circuit matrices
may be also derived more directly with the aid of the transition
matrix (5) without reference to (4).

Gr(r,t) = ,  E2z (20)

IV. CONCLUSIONS

The Green’s matrix procedure, when applied to multiconductor
transmission lines, facilitates their analysis in a highly systematic
and efficient manner. Thus we note, for example, that conceptually
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the derivation of the analog of (18) corresponding to more than a
single transmission line presents no fresh difficulties, while the use
of alternative techniques could prove cumbersome.
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Design and Analysis of a Waveguide-Sandwich
Microwave Filter

YUSUKE TAJIMA axp YOSHIHIKO SAWAYAMA

Abstract~In 1972 Konishi proposed a unique waveguide filter
of sandwich-like construction that was attractive because of its
simplicity. This short paper presents an analysis of the sandwich filter
that has a conductive sheet with finite thickness sandwiched between
waveguide shells. An equivalent circuit is derived, design charts
are proposed, and Young’s technique is applied to the design of an
M-band waveguide filter. The experimental results were found to
be in good agreement with the theory and analysis techniques de-
veloped herein.

I. INTRODUCTION

Microwave bandpass filter design techniques have been developed
by many authors. For instance, Cohn [17] and Riblet [2] have
treated coupled-resonator-microwave filters with narrow and mod-
erate bandwidths, while Young [3] has developed a more general
technique that holds for both small and wide bandpass microwave
filters. However, the structures of coupled resonator filters are
usually fairly complicated because many parts are required and the
dimensions of each are critical to the filter’s performance.

In 1972 Konishi proposed [4] the “microwave filter with mounted
planar circuit in a waveguide,”” and similar structures have also
been suggested bv Meier [5]. These circuits are essentially com-
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